HOW SALTS IN THE BRAIN MAKE US WAKE UP

 
Related

More people get divorced in March and August

Everything
426 points

Interscatter contact lenses talk to phone via Wi-Fi

Everything
850 points



Most recent

Pure Storage ofrece nuevas capacidades de gestión de almacenamiento de autoservicio

Patricia Amaya Comunicaciones
24 points

Sophos se asocia con Tenable para lanzar el nuevo Servicio de Gestión de Riesgos Administrados

Prensa
20 points

SICÓPATAS MAYORES

Octavio Cruz Gonzalez
12 points

Descubre cómo disfrutar de Anguilla en un fin de semana

Viajes y turismo
10 points

cCommerce: La nueva tendencia de venta para los eCommerce

Tecnologia
12 points

Stay Q Cleaning elimina molestias de limpieza para huéspedes

Comunicaciones
10 points

Lanzamiento de TREVOLUTION de AutoMundial

Tecnologia
10 points

Documento y momento

Juan Cantalatabla
12 points

Tecnologías destacadas de los cruceros Costa Smeralda

MaríaGeek
12 points

Homenaje a la mujer: Vívolo Café celebra un año de pasión por el café con entrada libre

Comunicaciones
12 points
SHARE
TWEET
"Salts in the brain appear to play a bigger role that scientists previously thought in whether we are asleep or awake.

HOW SALTS IN THE BRAIN MAKE US WAKE UP

By influencing the level of salts, researchers were able to control a mouse’s sleep-wake cycle.

“THE BRAIN IS MORE THAN A GROUP OF NEURONS THAT FUNCTION LIKE A COMPUTER.”

“The discovery reveals a completely new layer of understanding of how the brain functions,” says Professor Maiken Nedergaard from the Center for Basic and Translational Neuroscience at the University of Copenhagen.

“First and foremost, we learn more about how sleep is controlled. It may, however, also open up for a better future understanding of why some people suffer convulsive fits when staying awake all through the night.”

The researchers used mice to test whether injecting salt into the brain enables control of the mouse’s sleep-wake cycle—independently of the so-called neuromodulators. They report their results in Science.

Neuromodulators are compounds such as, for example, adrenalin, which plays a decisive role in our waking up every morning. The study shows that adrenalin and other neuromodulators change the level of salts surrounding the neurons, and that the salt balance then decides whether the neurons are sensitive to stimulation in the shape of a touch.

When we are awake, the salt balance makes neurons highly sensitive to stimulation, as opposed to the salt balance in the brain during sleep, where the level of salts makes it harder to activate the neurons.

“It’s much simpler than previously believed in brain research. The research conducted used to focus only on the brain’s neural activity as a means of mapping and analyzing complicated processes such as being asleep or awake,” says Nedergaard. “Our study shows that the brain uses something as simple as changing the level of salts to control whether we are asleep or awake.

“This discovery reveals that studying only neurons in order to understand brain activity is not enough. We must include all the supportive cells, especially the so-called astrocytes, which regulate the level of salts in the brain. The brain is more than a group of neurons that function like a computer.

“The fact that the brain needs seven-to-eight hours of sleep to function well on a daily basis reveals that there’s much more we need to understand, aside from neurocomputation.”

Fuente: www.futurity.org
SHARE
TWEET
To comment you must log in with your account or sign up!
Featured content