Can cosmic rays cause birth defects?

27.27% credibility
 
Related

Brazil's Ex-Leader, Luiz Inácio Lula da Silva, Is Held for Questioning

Atma
832 points

A mom wrote a heartwarming letter to Hillary Clinton about her dreams for her daughter s future

Atma
796 points



Most recent

Consulta y colaboración: La base para el desarrollo turístico de Bogotá

Comunicaciones
20 points

Hankook Tire Colombia nombra a nuevo Gerente General

Tecnologia
16 points

Smile.CX PRO revolucionará el mercado del Customer Experience en Colombia

Tecnologia
16 points

Principales trámites de una herencia que debes conocer

MaríaGeek
12 points

Tecnologías destacadas de los cruceros Costa Smeralda

MaríaGeek
12 points

Teatrikando Por BENJAMIN BERNAL Hay que hacer una encuesta, mejorar la cartelera

Benjamin Bernal
14 points

Courtyard by Marriott Bogotá Airport presenta su campaña especial para el Día de la Madre

Comunicaciones
8 points

Kingston: el mejor aliado de diseñadores y creativos

Prensa
8 points

¿Cómo y en qué casos puedes contratar a un detective privado?

MaríaGeek
16 points

Estos son los riesgos a los que se enfrentan los hogares inteligentes

Ciberseguridad
10 points
SHARE
TWEET
Airplane crews at high altitude are exposed to potentially harmful levels of radiation from cosmic rays.

Can cosmic rays cause birth defects?

“Neutrons which don’t reach the ground do reach airline altitude,” says Adrian Melott, professor of physics and astronomy at the University of Kansas. “Flight crews get a lot more radiation dose from neutrons. In fact, during solar particle events, airplanes are diverted away from the North Pole, where a lot more cosmic rays come down.”

Could these cosmic rays pose hazards even at sea level?

A new study in the Journal of Geophysical Research says probably not: those kinds of solar events are too weak to cause worry at ground level.

“We looked at two different studies,” Melott says. “Both of them indicated a connection between cosmic rays and the rate of birth defects. One also associated mutations in cells growing in a petri dish with a 1989 solar particle event.”

But researchers calculated the dose of radiation from a solar particle event to be less than a visit to the doctor might necessitate.

“We have a contradiction,” Melott says. “Our estimates suggest that the radiation on the ground from these solar events is very small. And yet the experimental evidence suggests that something is going on that causes birth defects. We don’t understand this, which is good. Something one doesn’t understand is a pointer to an interesting scientific problem.”

HAZARDOUS ‘SECONDARIES’
So the researchers looked at how cosmic rays from the sun create hazardous “secondaries” by reacting with the Earth’s atmosphere.

“Cosmic rays are mostly protons,” Melott says. “Basically, they are the nuclei of atoms—with all the electrons stripped off. Some come from the sun. Others come from all kinds of violent events all over the universe. Most of the ones that hit the Earth’s atmosphere don’t reach the ground, but they set off ‘air showers’ in which other particles are created, and some of them reach the ground.”

The air showers pose the most serious threat for the health of humans and other biology on the Earth’s surface via “ionizing radiation,” he says.

“Ionizing radiation is any radiation that can tear apart an atom or a molecule. It can affect life in many ways, causing skin cancer, birth defects, and other things. Normally, about one-sixth of the penetrating radiation we get down near sea level is from secondaries from cosmic rays.”

SOLAR RADIATION AROUND 775 CE
The researchers looked carefully at two forms of radiation formed by solar particle events—muons and neutrons—finding that muons are the most dangerous to biology at the Earth’s surface.

“Muons are a kind of heavy cousin of the electron,” Melott says. “They’re produced in great abundance by cosmic rays and are responsible for most of the radiation we get on the ground from cosmic rays. Neutrons can do a lot of damage. However, very few of them ever reach the ground. We checked this because some of them do reach the ground. We found that they’re likely responsible for a lot less damage than muons, even during a solar particle event.”

Of particular interest to the authors was a massive dose of solar radiation around the years 773-776 CE.

“Carbon-14 evidence was found in tree rings in 2012 that suggests a big radiation dose came down around 775, suggesting a huge solar particle event, at least 10 times larger than any in modern times,” Melott says. “Our calculations suggest that even this was mostly harmless, but maybe there is something wrong with our assumptions. We used ordinary understandings of how muons may cause damage, but perhaps there is some new physics here which makes the muons more dangerous.”

The next step in the investigation should be honing an understanding of how much exposure to muons DNA can withstand.

“In calculating the effect of muons, we used standard assumptions about what the effect of muons should be,” Melott says. “Their physics is pretty simple, just that of an electron with a lot of mass.

“But no one has ever actually done much experimentation to measure the effect of muons on DNA, because under normal conditions they are not a dominant player. They are not important, for example, in nuclear reactor accidents. We would like to put some synthetic DNA in a muon beam and actually measure the effect.”

Researchers from MidAmerica Nazarene University and the Blue Marble Space Institute of Science are coauthors of the study, which the NASA program Astrobiology: Exobiology and Evolutionary Biology funded.

Fuente: www.futurity.org
SHARE
TWEET
To comment you must log in with your account or sign up!
Featured content